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daily temperature ranges reflected occupancy of dif-
ferent habitats; coastal mixed/stratified and offshore 
subtropical/tropical waters. Furthermore, individuals 
that moved offshore and into more southern latitudes 
off Africa, exhibited a distinct daily cycle of deep 
dives (00:00–12:00, 200  m–700  m; 12:00–00:00, 
0–300  m), experiencing a more extreme range of 
temperatures (6.8–27.4  °C), including cooler mini-
mum temperatures, than those remaining in Euro-
pean coastal habitat (9.2–17.6 °C). Collectively, these 
findings challenge the supposition that temperature 
serves as a universal driver of seasonal dispersal from 
coastal seas and prompts further studies of deep-
water forays in offshore areas.

Keywords Cetorhinus maximus · Shark migration · 
Seasonal dispersal · Thermal ecology, Atlantic 
Ocean · Satellite tracking

Abstract Long-distance migrations by marine 
vertebrates are often triggered by pronounced envi-
ronmental cues. For the endangered basking shark 
(Cetorhinus maximus), seasonal changes in water 
temperature are frequently proposed as a cue for 
aggregation within (and dispersal from) coastal hot-
spots. The inference is that such movements reflect 
year-round occupancy within a given thermal ‘enve-
lope’. However, the marked variance in timing, direc-
tion and depth of dispersal movements hint at a more 
nuanced explanation for basking sharks. Here, using 
data from pop-off archival transmitters deployed 
on individuals in Irish waters, we explored whether 
autumnal decreases in water temperature triggered 
departure from coastal habitats and how depth and 
location shaped the sharks’ realised thermal environ-
ment over time. Temperature was not an apparent 
driver of dispersal from coastal seas, and variance in 
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Introduction

Animal migrations are defined by their reciprocity 
and predictability, differentiating them from other 
movement strategies such as nomadism, invasions 
and dispersal (e.g. Newson et  al. 2009; Teitelbaum 
and Mueller 2019). For marine vertebrates, the most 
frequently documented migrations are seasonal 
(Luschi 2013), with animals moving in response 
to shifts in prey availability (Corkeron and Connor 
1999) and/or physiological constraints aligned with 
changes in their ambient environment such as water 
temperature (Schlaff et al. 2014). In response to rap-
idly warming seas, effective plans for conservation 
and management must recognise that migration pat-
terns may not be static because migration routes can 
shift and the timing of migratory movements can be 
dependent on fluid environmental conditions as they 
are experienced (Hays et al. 2019; Senner et al. 2020). 
Such management considerations are magnified for 
long-distance migrants that traverse territorial bound-
aries adding a layer of political complexity (e.g. New-
son et al. 2009; Mackelworth et al. 2019; Mason et al. 
2020).

Seasonal shifts in environmental conditions have 
been proposed as dispersal cues for basking sharks 
(Cetorhinus maximus) that aggregate in coastal hot-
spots at temperate latitudes during summer months, 
moving typically into offshore areas with the onset of 
autumn (Sims et  al. 2003; Gore et  al. 2008; Skomal 
et al. 2009; Doherty et al. 2017a, 2017b, 2019; Braun 
et al. 2018; Dolton et al. 2019). Oscillations in plank-
ton abundance provide an intuitive explanation for 
this pattern (Sims and Reid 2002), but prey densities 
appear adequate for year-round foraging (Sims 1999) 
and residence in coastal seas (Doherty et  al. 2017a, 
b). Likewise, water temperature has been proposed 
frequently as a cue for both seasonal aggregation and 
subsequent dispersal of basking sharks (NW Atlantic: 
Skomal et  al. 2009; Siders et  al. 2013; Braun et  al. 
2018—NE Atlantic: Berrow and Heardman 1994; 
Cotton et al. 2005; Priede and Miller 2009; Witt et al. 
2012; Miller et al. 2015; Austin et al. 2019; Doherty 
et  al. 2019). The broad inference is that latitudinal 
movements, triggered by thermal cues, may allow 
individuals to remain within a given ‘envelope’ of 
temperatures (i.e. an optimal thermal range) through-
out the year irrespective of season. Certainly, move-
ments of basking sharks in the Northwest Atlantic 

appear to mirror seasonal changes in water tempera-
ture, with individuals ranging from Cape Cod, USA, 
to tropical waters (Skomal et al. 2009; Hoogenboom 
et al. 2015; Braun et al. 2018).

Despite evidence of water temperature as a driver 
of basking shark movements, winter dispersal from 
coastal seas is not ubiquitous (Gore et  al. 2008; 
Doherty et  al. 2017a),  raising  an interesting ques-
tion. Quite simply, if migration from coastal areas is 
to maintain a thermal envelope, why do some ani-
mals stay and others disperse? Recent evidence from 
beyond the Atlantic may provide some insights, with 
Finucci et  al. (2021) revealing that sea surface tem-
perature (SST) aligned poorly with basking shark 
habitat suitability. Taken together, these findings hint 
at a more nuanced role for temperature in dispersal, 
or distinct regional differences in behaviour. Within 
this overall context, we examined the movements and 
behaviour of basking sharks in the Northeast Atlantic 
displaying markedly different ‘overwintering’ strate-
gies, namely, residency in temperate coastal seas and 
long-distance dispersal offshore. Using archived tem-
perature, location and depth data relayed via animal-
borne satellite transmitters, we initially questioned 
whether decreases in coastal water temperatures 
during late boreal summer triggered dispersal from 
coastal seas in the NE Atlantic. Subsequently, we 
explored how depth and location shaped the sharks’ 
realised thermal environment over time.

Methods

Device deployment site

Searches for sharks were conducted during calm 
(Beaufort Force < 3) sunny conditions to maximise 
the likelihood of encounters. Basking sharks were 
tagged between the 26th of July and the 8th of August 
2012 at Malin Head, Ireland (55.37○ N, 7.40○ W). 
This deployment time  frame was chosen to maxim-
ise data recording across autumn and winter months 
when sharks are known to disperse from coastal seas 
around Great Britain and Ireland (Sims et  al. 2003; 
Doherty et al. 2017a; Dolton et al. 2019). The waters 
around Malin Head are a seasonal aggregation area 
(hotspot) for basking sharks in the North East Atlan-
tic (Johnston et al. 2019).
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Water temperature at the deployment site was 
recorded year-round, for fisheries purposes by the 
Irish Marine Institute, using Tidbit temperature 
probes (location: 7.55028° W, 55.15845° N) deployed 
at 1-m and 11-m depths (Marine Institute Data Cata-
logue, 2012). To illustrate the seasonal change in 
water temperature at the deployment site, we plot-
ted water temperature preceding the tag deployments 
(April–July/August), the dispersal phase (August) 
and the post dispersal periods (September–Decem-
ber) (Fig. 1).

Bathymetry data (ocean base layer sources: Esri, 
GEBCO, NOAA, National Geographic, DeLorme, 
HERE, Geonames.org and other contributors) were 
used to determine the location of the west European 
coastal shelf (< 300-m-depth contour) with shelf edge 
and offshore oceanic habitat defined as greater than 
300-m depth, after Huthnance et al. (2009).

Device deployment and recovery

During tagging, the size of the shark was estimated 
with reference to the boat after Bloomfield and 
Solandt (2008) (i.e. 0–2  m; 3–4  m; 5–6  m; 7–8  m; 
8  m +). A GoPro Hero with modified dive housing, 
attached to a 2-m fibreglass painters’ pole, was used 
to gather underwater footage of the genital area from 
which shark sex could be determined.

Next, Wildlife Computers Mk 10 Pop-off Archi-
val Transmitters with Fastloc GPS (PATF) tags 

(length: ~ 150  mm; weight in air: 100  g) were 
deployed onto sharks (n = 5) by use of a 2-m fiber-
glass pole with epoxied applicator from the bow of a 
7.4 m rigid inflatable boat (RIB). Stainless steel avia-
tion wire tethers of 1.2-m length with 5-cm Wildlife 
Computers titanium (Ti) anchors were used to secure 
the device in the dorsal musculature to the rear of the 
shark’s dorsal fin. An additional high-density foam 
float (10-cm length and 5-cm diameter) was fitted 
mid-way along each tether to maximise surface time 
and dampen the effect of shark movements on the 
devices’ surface stability.

The PATF tags are hybrid, archival transmit-
ters that record depth, water temperature (accu-
racy to 0.05  °C), light level (5 ×  10−12  W   cm−2 to 
5 ×  10−2  W   cm−2), and opportunistically generated 
Fastloc GPS and ARGOS locations when the trans-
mitter is exposed at the surface. All of the tags were 
programmed to release from their host shark (pop-
off), after 140 days of deployment via an electrically 
corrodible pin. The time interval of 140 days was cho-
sen as a compromise between maximising the period 
of data collection, likelihood of data recovery and 
battery longevity (e.g. Musyl et  al. 2011). A safety 
cut-off limit of 15% of battery power remaining was 
also set to ensure the tag popped off with sufficient 
power to transmit archived data via the ARGOS satel-
lite network. Tags were labelled to aid opportunistic 
recovery by members of the general public should 
they ultimately be washed ashore.

Shark 2 moves offshore

Shark 1 moves offshoreShark 1 tagged

Shark 2,3,4 tagged

Fig. 1  Water temperature in the study area recorded by Tidbit 
temperature probe (location: 7.55028° W, 55.15845° N) at 1-m 
and 11-m depth during the months preceding the PATF tag 
deployments, dispersal and post dispersal periods. Red points 

indicate the PATF tag deployment dates for shark 1 (26 July 
2012) and 2, 3 and 4 (8 August 2012). Black points show the 
approximate date of movement offshore (> 300 m) for shark 1 
(22 August 2012) and shark 2 (26 August 2012) respectively
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Location data

The PATF tags provided three different location 
data types including the following: (i) Fastloc GPS 
locations (for a detailed description of determin-
ing positions from Fastloc GPS generated data, see 
Dujon et al. (2014) and Wensveen et al. (2015)) that 
were transmitted via the ARGOS satellite network 
(data received from CLS via ARGOS Direct email 
service) (ii) ARGOS satellite-derived locations 
(for a detailed description of deriving positions 
from multiple ARGOS uplinks, see Costa et  al. 
(2012) and Hoenner et al. (2012)) and (iii) geoloca-
tion positions from light level data (for a detailed 
description of deriving positions from light level 
data, see Teo et al. (2004) and Braun et al. (2018)).

We used Wildlife Computers Geolocation Pro-
cessing and modelling software (GPE3) to generate 
broad latitude derived surface areas of uncertainty 
(i.e. Lightloc locations) that were subsequently con-
strained by matching device recorded surface events 
and water temperature readings (taken at night to 
avoid solar influence) with corresponding reference 
data for sea surface temperature and bathymetry to 
determine the most likely area of location. Histori-
cally, estimates of location in offshore areas (where 
the sharks ranged deeper into the water column) 
were likely to be associated with broader confi-
dence intervals owing to a reduction in the quality 
of light data (see Doherty et al. 2017a; Braun et al. 
2018). However, the incorporation of ‘maximum 
swimming depth’ into the underlying GPE3 Hidden 
Markov models allows for location refinement by a 
process of exclusion (i.e. dive depth cannot exceed 
bathymetry). The resulting surface probability grids 
were further constrained by a predetermined animal 
speed parameter to eliminate locations too far to 
be biologically feasible. The recommended model 
parameter (Wildlife Computers) is 1.5–2 times the 
normal cruise speed of the animal. Here, we used 
a maximum sustained cruise speed for basking 
sharks of 2   ms−1 after Johnston et  al. (2018) and 
a model parameter of 3.5   ms−1. In addition, when 
accurate Argos and Fastloc positions were available 
the GPE3 software used these as ‘anchor points’ to 
refine the trajectory of the track and improve the 
accuracy of the model. Maximum likelihood tracks 
were then plotted using the ggplot2 package in R 
(Wickham 2019).

Depth and temperature data

The PATF tags recorded pressure every second with 
an accuracy equating to ~ 10  cm (i.e. pressure was 
taken as a proxy for depth in metres) and water tem-
perature every minute to a resolution of 0.05 ○C. 
These raw data were summarised as minimum and 
maximum depth and minimum and maximum tem-
perature, in four data files daily, covering the pre-
determined time blocks: 00:00–06:00; 06:00–12:00; 
12:00–18:00; 18:00–00:00. For each 6-h time period, 
the tag recorded the percentage of time the shark 
spent in five pre-defined temperature bins (< 9  °C, 
9–12 °C, 12–15 °C, 15–18 °C > 18 °C). The four data 
summary files were then aggregated and combined 
with available location data (Lightloc) for the 24-h 
period and subsequently compressed on board the tag 
(i.e. raw data were not available) for transmission post 
pop-off. Post pop-off only a representative sample 
of the compressed data files are transmitted via the 
ARGOS network.

To compare the depth and temperature ranges 
experienced by each shark we first calculated mov-
ing averages for the maximum and minimum depth 
and temperature recorded during each 6-h summary 
period (e.g. 06:00 to 12:00). We used a moving aver-
age with an interval of 120 h to ease data visualisa-
tion. Given the summarised nature of the daily data 
records and the limitations of the representative sam-
ple transmitted via satellite, only partial amounts of 
data are recoverable. When missing data points were 
encountered the moving average was calculated on 
the next available data point in the dataset.

We built a Bayesian structural time-series model 
to compare the temperature profiles of offshore and 
coastal sharks. Time series intervention analysis can 
be used to estimate the causal impact of events or 
interventions on the trajectory of a time series. To 
accomplish this, the time series of interest is com-
pared to a ‘control’ time series that has not been 
exposed to the same intervention. In our case, we 
were interested in exploring how dispersal off-shore 
affected the realised thermal environment of sharks 
compared to those that remained in coastal envi-
ronments. Using shark 3 as a control time series for 
remaining in coastal areas, we examined how move-
ment offshore in sharks 1 and 2 impacted the mini-
mum and maximum temperatures experienced. This 
analysis was completed using the CausalImpact 
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function from the CausalImpact R package 
(Brodersen et al. 2015).

All data processing and analysis was undertaken 
in R statistical computing software (R Core Team 
2018), and visualised via ‘ggplot 2’ (Wickham 2019).

Results

Deployments and data recovery

Five medium-sized sharks (3–6 m) were successfully 
equipped with PATF tags off Malin Head, Ireland, 
between 26th of July 2012 and the 8th of August 
2012 (Table 1). Three of the tags functioned for the 
entire deployment period of 140  days, one prema-
turely popped off after 55 days (shark 4) (Table 1) and 
one tag did not transmit any data. The reason for the 
premature pop-off remains unknown, but the shark 
was at a depth of 37 m when this occurred, indicating 
it was not as a result of by-catch (i.e. removed from 
the shark when taken aboard). One tag (shark 3) was 
physically recovered post pop-off, resulting in the 
recovery of additional data beyond that received via 
transmission (depth and temperature summary files: 
n = 274 transmitted; n = 570 physically recovered 
and Lightloc fixes; n = 41 transmitted; n = 219 physi-
cally recovered, noting raw data is not archived). The 
remaining tags (sharks 1, 2 and 4) successfully trans-
mitted a representative range of Lightloc locations 
and summary depth and temperature data recorded 

throughout their deployment periods (Table 1). This 
resulted in the recovery of 100% of the compressed 
data files for sharks 3 and 4 during their deployment 
and 85% and 75% of the compressed data files for 
sharks 1 and 2 respectively. A low number of Argos 
and Fastloc GPS positions were generated whilst the 
tags were on the sharks (Table 1) limiting the number 
of anchor points for the GPE3 model.

Dispersal movements

Within 5 days of transmitter deployment, sharks 1, 
2 and 4 dispersed from the aggregation site in three 
different directions (Fig. 2), whilst shark 3 remained 
within close proximity (maximum displacement 
recorded from deployment site 166  km) to the 
aggregation site throughout the entire deployment 
period (N = 140 days) (Fig. 2). Over the course of 
the deployments, the four sharks moved into, or 
remained in, two broadly definable habitat types (i) 
offshore, including the shelf edge (> 300-m depth) 
(sharks 1 and 2) and (ii) coastal < 300-m depth 
(sharks 3 and 4) (Figs. 2 and 3). More specifically, 
sharks 1 and 2 displayed wide ranging movements 
(maximum displacement recorded from deploy-
ment site for shark 1: 5004 km; shark 2: 2581 km) 
into offshore tropical (10° latitude) and subtropi-
cal shelf-edge waters (32° latitude) respectively. 
Shark 2 did not move back onto the coastal shelf 
in Northern Spain rather it stayed in waters over 
1000 m deep except for a very brief transit across 

Table 1  Details of sharks; 
transmitter deployment and 
pop-off dates and locations; 
number of data files (max-
min temperature, time at 
temperature, time at depth) 
and location data received 
or recovered

Shark ID (1) (2) (3) (4)

Deployment
  Date 26/07/2012 08/08/2012 08/08/2012 08/08/2012
  Lat (°N), long (°W) 55.337, − 7.419 55.231, − 7.562 55.378, − 7.317 55.371, − 7.241
  Sex F not recorded F F
  Length 5–6 m 3–4 m 5–6 m 5–6 m

Pop-off/recovery
  Date 13/12/2012 26/12/2012 26/12/2012 02/10/2012
  Lat (°N), long (°W) 14.739, − 31.759 32.215, − 10.902 55.268, − 6.389 51.299, − 5.789
  Tracking period 

(days)
140 140 140 55

   Number of data files 482 426 570 224
  Lightloc locations 

(N)
208 177 219 123

  Fastloc locations (N) 2 4 1 1
  ARGOS locations 

(N)
3 1 0 3
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the edge of the coastal shelf as it leaves the Bay of 
Biscay and moves south into deeper waters. In con-
trast, sharks 3 and 4 remained on the coastal shelf 
for their entire deployments (shark 3 N = 140 days; 
shark 4: N = 55 days). Furthermore, shark 4 moved 
south through the Irish Sea into the Celtic Sea to a 
known autumnal aggregation area (maximum dis-
placement recorded from deployment site for shark 
4: 652  km) where the water column is typically 
stratified (Stéphan et al. 2011) (Fig. 2).

A limited number of Argos and Fastloc GPS 
anchor points were generated whilst the tags were 
on the sharks (Table  1) allowing refinement of 
location estimates en route. Furthermore, as all 
sharks spent considerable time in the photic zone 
(either constantly or cyclically) adequate light data 
were available for the GPE3 processing.

Depth and temperature

We observed that all sharks continued to range 
throughout the entire water column (Fig.  3) for the 
duration of the deployments. However, sharks that 
moved into offshore waters spent a greater proportion 
of time below 100 m (shark 1: 0.66 and shark 2: 0.54) 
than the sharks that remained on the coastal shelf 
(shark 3: 0.14 and shark 4: 0.02) (Fig. 3). The maxi-
mum depth recorded for each shark was as follows: 
shark 1: 1168 m; shark 2: 1168 m; shark 3: 264 m and 
shark 4: 280 m.

Sharks 1 and 2 departed offshore (shark 1 on 22 
August 2012; shark 2 on 26 August 2012) before 
water temperatures recorded the seasonal peak 
(16.0  °C) on the 29 of August (Fig.  1). Thereafter, 
water temperatures were stable at approximately 

Fig. 2  GPE-3 generated tracks for the four sharks illustrating 
dispersal routes from the aggregation site at Malin Head and 
subsequent movement patterns in the Eastern Atlantic. Back-
ground colour density indicates depth with darker patches 

representing greater depths. Ocean base layer sources: Esri, 
GEBCO, NOAA, National Geographic, DeLorme, HERE, 
Geonames.org and other contributors (Esri 2019)
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half a degree Celsius below the peak value (range 
16.0–15.6 °C) for a period of 12 days before rapidly 
deceasing (Fig.  1). Moreover, water temperatures at 
the deployment site did not drop below the equiva-
lent water temperature recorded on the day of the tag 
deployments until 24 and 17 days after sharks 1 and 2 
had moved offshore, respectively.

Sharks 1 and 2 that moved offshore into more 
southern latitudes experienced a wider temperature 

range (range 20.6 °C: 6.8–27.4 °C) than sharks 3 and 
4 that remained on the coastal shelf (range 8.4  °C: 
9.2–17.6  °C) (Fig.  4). Moreover, the sharks that 
moved offshore into southern latitudes experienced 
cooler minimum temperatures (shark 1: 6.8 °C; shark 
2: 8.6 °C) than those concurrently recorded by sharks 
occupying higher latitudes (shark 3: 9.2 °C; shark 4: 
9.8  °C) (Fig. 3). Sharks that moved offshore, sharks 
1 and 2, experienced significantly higher maximum 

Coastal Offshore 

Shark 1 Shark 2 Shark 3 Shark 4 

Fig. 3  Latitudinal movements recorded throughout respective 
deployments, colours represent deployment months; minimum 
and maximum depths occupied (6-h intervals) over the entire 
deployment with moving averages (MA) for each time block 
of 20 observations (i.e. approximately every 120 h); minimum 
and maximum temperatures occupied (6-h intervals) over the 
entire deployment with moving averages (MA) for each time 

block of 20 observation (i.e. approximately every 120 h); time 
spent in five predefined temperature bins expressed as a per-
centage of each 6-h interval. For instance, in the month of 
October shark 3 spends every 6-h interval  in 9–12 °C (100%) 
whereas shark 1 regularly spends a portion of each 6-h interval 
in multiple temperature ranges. Sharks 1 and 2 are considered 
to be offshore when their maximum depths move below 300 m
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temperatures than shark 3 that remained in coastal 
waters (Bayesian one-sided tail-area probability 
p < 0.01). Sharks 1 and 2 experienced an increase of 
46% and 15% in maximum temperatures respectively. 
Shark 1 had a significant decrease of 10% in minimum 
temperatures (Bayesian one-sided tail-area probabil-
ity p < 0.01), which when combined with maximum 
temperature increases resulted in a 115% increase in 
the temperature range (Bayesian one-sided tail-area 
probability p < 0.01). Shark 2 minimum temperatures 
were not significantly different than shark 3 even after 
moving offshore into warmer surface waters (Bayes-
ian one-sided tail-area probability p = 0.439); how-
ever, shark 2 did experience a 33% increase in tem-
perature range when compared to shark 3 (Bayesian 
one-sided tail-area probability p < 0.01). The contrast 
in temperature ranges experienced between offshore 

and onshore sharks reflects the underlying time-at-
temperature profiles (Fig. 3).

Daily forays through the water column

When sharks 1 and 2 moved off the coastal shelf, 
they began to undertake deep daily forays into the 
mesopelagic zone (Fig.  3). Thereafter, sharks 1 and 
2 routinely moved into deep waters (~ 200–700  m) 
during the early morning (00:00–06:00 h), returning 
to shallower waters (~ 0–300 m) during the afternoon 
(12:00–18:00) (Figs. 5 and 6). Conversely, sharks that 
remained in coastal habitat displayed no apparent diel 
pattern in-depth use (Fig. 6).

We compared minimum and maximum recorded 
daily temperatures for sharks 3 and 4 (coastal resi-
dents) over the period of 30 of August to 9 of October 
(i.e. before the tag on shark 4 prematurely detached) 

Fig. 4  Variance in the 
daily depth and tem-
perature ranges for the four 
individual sharks over their 
entire deployment periods. 
Ranges were calculated by 
subtracting the minimum 
values from the maximum 
values over each 24-h 
period for depth and tem-
perature respectively. Black 
lines represent median 
range values for the entire 
deployment with points 
representing outliers

Offshore Coastal 
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and found that shark 4 had experienced a wider tem-
perature range than shark 3 (shark 3: 13.6 –14.8 °C; 
shark 4: 11–17.6  °C), despite having similar depth 

ranges during this period (Fig.  7). Furthermore, the 
depth temperature profiles for sharks 3 and 4 that 
remained in coastal waters indicate that the two 

Offshore Coastal 

Shark 1

Shark 1

Shark 2

Shark 2

Shark 3

Shark 3

Shark 4

Shark 4

Fig. 5  Boxplots representing minimum depth, maximum 
depth, minimum temperature and maximum temperature 
recorded during each of the 6-h intervals over their entire 

deployments. Black lines represent median values with boxes 
indicating the interquartile range. Outliers are identified with 
black circles
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sharks concurrently occupied different thermal hab-
itats (Fig.  7) with shark 3 likely in a mixed coastal 
front whilst, shark 4 was likely in a highly stratified 
water column.

Discussion

In an ever-changing climate, identifying how water 
temperature shapes the distribution of marine life is 
fundamental for effective conservation on a regional 
and global scale (Rijnsdorp et  al. 2009; Poloc-
zanska et  al. 2016; Campana et  al. 2020; Payne 
et  al. 2015). However, given the diverse physiolo-
gies amongst elasmobranchs (e.g. Watanabe et  al., 
2015) a ‘one-size-fits-all’ understanding of thermal 
range is not appropriate with some species appar-
ently preferring a narrow set of temperatures (e.g. 
tiger sharks—Payne et  al. 2018) whilst others range 
widely across broad temperature ranges (e.g. white 
sharks—Boustany et  al. 2002). Here, we explored 
whether the post-aggregation movements of basking 
sharks reflected the seasonal shift in water tempera-
ture in the NE Atlantic (i.e. summer-autumn). Our 
findings suggested that ‘decisions’ linked to dispersal 
or residency might be highly individualised (Shaw 
2020), providing further evidence of individual 

variation in dispersal dynamics for basking sharks in 
this region (Doherty et al. 2017a). For example, shark 
3 remained exclusively in coastal habitat through-
out the winter months, reaffirming that seasonal dis-
persal from high latitudes is not obligate (Doherty 
et  al. 2017b). Extending this argument, sharks that 
remained in coastal habitats were not compelled 
physiologically to move to warmer climes following 
autumnal decreases in water temperature. Likewise, 
the offshore movements by sharks 1 and 2 occurred at 
a time when the water temperature at the deployment 
site, in NE Atlantic coastal waters, was still increas-
ing (Fig. 1). For basking sharks, identifying whether 
responses to temperature are regionally adaptive or 
consistent at a species level will help ‘future-proof’ 
management approaches within our changing climate 
(e.g. Senner et al. 2021; Thorburn et al. 2021; Lennox 
et al. 2021).

With regards to thermal envelopes, sharks in off-
shore habitat and more southern latitudes experi-
enced a wider and more extreme range of tempera-
tures (6.8–27.4  °C) than those sharks that remained 
in coastal habitat at higher latitudes (9.2–17.6  °C; 
Figs.  3 and 4). Thus, it is improbable that the rea-
son for southerly movements was to remain within 
a constant temperature range year-round or to move 
to warmer waters overall. Indeed, sharks 1 and 2 

Shark 1 Shark 2

Fig. 6  Sub-sections of dive profiles for offshore sharks 1 and 
2 exemplifying deep daily forays into the mesopelagic zone. 
Minimum (green) and maximum (blue) depths every 6  h are 
shown for shark 1 from 25 August–31 August and for shark 2 
from 13 to 18 September. Points represent the measurement 

for the preceding 6 h (i.e. 06:00 points show the minimum and 
maximum depths recorded from 00:00 to 06:00). Inset plots 
show full dive profiles for each shark with the section of the 
dive profile indicated by the black boxes
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off the coast of Africa routinely experienced cooler 
minimum temperatures during the winter than sharks 
residing off the coasts of Great Britain and Ireland 
at the same time (Fig. 3). These findings expand the 
known thermal range for basking sharks in the NE 
Atlantic from the 8.0–16.0  °C reported by Doherty 
et al. (2019) aligning more closely with studies from 
the NW Atlantic (4.2–29.9  °C; Braun et  al. 2018). 
The salient point is that horizontal movements to 
southerly latitudes alone did not explain the differ-
ences in temperature experienced by coastal and 
offshore sharks (i.e. a 2D conjecture). Rather, it was 
a combination of location (Fig.  2) and the behav-
ioural shift to deep forays in the offshore that led to 
the expansion of the realised thermal niche (Figs.  5 
and 6). Separately, the sharks that resided continu-
ally in coastal habitats (sharks 3 and 4) also experi-
enced markedly different temperature ranges during 
the autumn and winter (Fig.  4). Differences were 
driven by the degree of thermal stratification in the 
water column at their given locations (Fig. 7), which 
implies that neither residence nor dispersal behav-
iours served to maintain a constant temperature range 
over time. These findings again highlight the impor-
tance of sub-surface measures of temperature when 
investigating habitat association in deep-diving spe-
cies (Edwards et al. 2019).

Any discussions of habitat use must also account 
for the underlying bathymetry (Cogan et  al. 2009) 
as well as the conditions experienced below the sur-
face (Curtis et  al. 2014). For example, deep forays 
into the water column commenced once individu-
als moved beyond the shelf edge, with depth emerg-
ing as the key determinant of realised thermal niche 
(Figs. 3 and 6). The distinct periodicity of these for-
ays by sharks 1 and 2 (Fig.  5), indicated that such 
behaviours were following a daily cycle (Fig.  6), 
mirroring the vertical distribution of mesopelagic 
scattering layers (e.g. ~ 400–600  m during day) in 
the North Atlantic (Klevjer et al. 2016). Deep forag-
ing behaviour has been alluded to previously in the 
species (Sims et al. 2003; Braun et al. 2018; Doherty 
et al. 2019) although associations with specific mes-
opelagic prey remain unknown. This suggestion does 
not negate other reasons for extensive forays into the 
water column. For example, oscillatory and or ‘yo 
yo’ deep-diving and surfacing events can serve sev-
eral functions (reviewed by Braun et  al. 2022) such 
as conservation of energy during travel, detection of 

A

B

Fig. 7  (A) The location on the coastal shelf of sharks 3 and 
4 between August 30 and October 9. (B) The contrasting 
changes in ambient minimum temperature experienced with 
depth by sharks 3 and 4 at their respective locations dur-
ing their overlapping time period (August 30 and October 
9). Points are slightly transparent to identify areas of high 
overlap. Smooth lines for each shark represent a loess fit and 
shaded areas around the line represent the standard error of the 
smooth. Minimum temperatures were recorded in-depth bins 
of 8 m (e.g. 0–8 m, 8–16 m, 16–24 m) to a precision of 0.2° C
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chemical cues, improving magnetic perception and 
thermoregulation (Nelson et  al. 1997; Klimley et  al. 
2002; Doherty et  al. 2019). Unravelling the signifi-
cance of offshore behaviour (i.e. mesopelagic forag-
ing) is timely given the emergence of regional elas-
mobranch conservation efforts in the NE Atlantic 
(Queiroz et al. 2019; Walls and Dulvy 2021). Ireland, 
as a member of the European Union, has a significant 
role to play in the management of migratory marine 
species such as the endangered basking shark (Sims 
et  al. 2015) that reside within or frequent its expan-
sive territorial waters (i.e. EEZ 880,000  km2). Here, 
we reiterate that offshore areas (traversing Ireland’s 
EEZ and beyond) likely constitute more than simple 
migratory pathways for the species (Doherty et  al. 
2017a), further highlighting the requirement for dedi-
cated study beyond well-established coastal hotspots 
(Sims 2008).

From a physiological perspective, the oscillating 
excursions from the surface to depth (Fig.  6) may 
serve a similar function to those reported for other 
large-bodied pelagic sharks (Queiroz et al. 2017) such 
as tiger sharks Galeocerdo cuvier (Nakamura et  al. 
2011), whale shark Rhincodon typus (Meekan et  al. 
2015) and the bluntnose sixgill shark Hexanchus gri-
seus (Coffey et al. 2020) that are required to move to 
surface waters regularly to rewarm. Arguably, bask-
ing sharks’ large mass (Mathews and Parker 1950) 
and substantial stores of liver oil (Tsujimoto 1935) 
might dampen the rate of heat diffusion allowing 
them to temporarily access cold water prey at depth in 
open ocean areas, where surface prey fields are more 
depleted. Indeed, the concept of ‘thermal inertia’ in 
other large deep-diving sharks is well established 
(e.g. Carey et  al. 1981; Kitagawa and Kimura 2006; 
Thums et al. 2013; Meekan et al. 2015; Howey et al. 
2016) and warrants further attention in the species.

In summary, our data from the NE Atlantic 
revealed no apparent link between the timing of off-
shore dispersal in basking sharks and water temper-
ature, nor a sustained thermal envelope over time. 
Irrespective of latitude, depth use was the key deter-
minant of thermal range (and minimum temperatures) 
within coastal and offshore areas. We avoid extrapo-
lating these findings across the Atlantic and simply 
suggest that thermal responses might be regionally 
adaptive. Finally, from a management perspective, 
basking sharks in the NE Atlantic may possess the 
adaptive capacity to tolerate projected shifts in water 

temperature linked to climate change. However, this 
conjecture is premature without a clearer understand-
ing of why basking sharks range so extensively and 
continuously throughout the world’s oceans.
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